Kinetics and the Mechanism of Isoamylene Alcohol Conversion in Acid Media Containing Formaldehyde

M. I. VINNIK, R. S. RYABOVA\*, G. F. OSIPIVA and V. S. MALINSKII

Institute of Chemical Physics, Ac. Sci. USSR, Vorob'evskoe Shosse 2-b, 117334 Moscow, U.S.S.R.

Isoamylene alcohols (3-methyl-3-butene-3-ol, I; 3-methyl-1-butene-3-ol, II) in aqueous acid solutions (H<sub>2</sub>SO<sub>4</sub>, HClO<sub>4</sub>) were subjected to reducible isomerization, hydration to 3-methyl-butane-1,3-diol (*III*) and dehydration to isopropene (C<sub>5</sub>H<sub>8</sub>). The kinetics and mechanism of these reactions were studied in detail [1, 2].

The unsaturated alcohols I and II and glycol IIIin acid solutions containing formaldehyde (CH<sub>2</sub>O) are known to react with CH<sub>2</sub>O to form multiple condensation products [3, 4]. We studied the kinetics of isopropene hydration (reaction 1) to an equilibrium mixture of alcohols I and II, the hydration of alcohols I and II (2), and the condensation of compounds I, II, III with CH<sub>2</sub>O (3) in various solutions of sulphuric and chloric acids, varying the content of CH<sub>2</sub>O from 0 to 1.0 mole/l at 25 and 40 °C [5].

The observed rate constants of reactions (1), (2), (3) were found to depend on the acid concentration and at the given medium acidity on CH<sub>2</sub>O concentration in the system.

The reaction mechanisms are discussed in terms of the kinetic regularities obtained.

The catalytic activity of formaldehyde is controlled by the medium acidity  $(h_o)$  and the concentration of nucleophiles (HSO<sub>4</sub>, ClO<sub>4</sub>).

## References

- 1 M. I. Vinnik, R. S. Ryabova, G. F. Oleinik and A. P. Troitskii, Zhurn. Org. Khim., 11, 232 (1975).
- 2 R. S. Ryabova, G. F. Oleinik, L. D. Abramovich, A. P. Troitskii and M. I. Vinnik, *Zhurn. Org. Khim.*, 12, 499 (1976).
- 3 M. I. Farberov et al., Zhurn. Org. Khim., 27, 2806 (1957).
- 4 M. Hellin et al., Rev. Inst. fr. Pétrole, 22, 807 (1967).
- 5 M. I. Vinnik, G. F. Osipova and R. S. Ryabova, *Izv. Akad. Nauk SSSR*, ser. khim., 8, 1775 (1978).

| TABLE. Extraction | constants; | 1,2-dich | loroethane, | 25 | °C. |
|-------------------|------------|----------|-------------|----|-----|
|-------------------|------------|----------|-------------|----|-----|

## Ion Selective Extraction of Alkali and Alkaline Earth Metal Ions by New Crown Ether Reagents

**MAKOTO TAKAGI\* and KEIHEI UENO** 

Department of Organic Synthesis, Faculty of Engineering, Kyushu University, Fukuoka 812, Japan

To understand the mechanism of solvent extraction of alkali and alkaline earth metal ions by crown ether-based reagents, [1-3], new chromogenic crown ethers <u>1</u> and <u>2</u> were synthesized, and their extraction behavior was studied.

<u>1</u> is insoluble in water, and its 1,2-dichloroethane solution extracts selectively alkaline earth metal ions, especially calcium, according to the reaction (1). Potassium is partially extracted when present in high concentration. The reagent 2 extracts potassium



X, Y = H, NO<sub>2</sub>, Br, OH, picrylamino, chromophoric groups conjugated with dissociable protons.

selectively. The table summarizes the constants  $K_{ex}$ . The extraction ability of <u>1</u> or <u>2</u> is generally higher than the reagent <u>3</u> or <u>4</u> reported earlier. This probably reflects the difference in the mode of extraction. The extraction by the former reagent is based on the intramolecular ion-pair formation, while in the latter the adoption of chelate-type structure

| Mg                         | Ca                    | Sr                    | Ba                    |
|----------------------------|-----------------------|-----------------------|-----------------------|
| $la < 1 \times 10^{-18}$   | $1.0 \times 10^{-15}$ | $6.3 \times 10^{-18}$ | $2.5 \times 10^{-18}$ |
| $Ib \ll 1 \times 10^{-10}$ | $2.9 \times 10^{-10}$ | $3.1 \times 10^{-11}$ | $7.3 \times 10^{-10}$ |